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according to Wislicenus (1915). The absorpt ion spectra 
of these compounds in benzene solution were deter- 
mined with a Beckman spectrophotometer.  The spectral  
examina t ion  of the pleochroism of the solid was carried 
out on a Bausch and Lomb high-dispersion grat ing 
spectrograph and  involved a comparison, by  the 
rotating-sector method,  of the t ransmission of plane 
polarized fight through a single crystal  held in different 
orientations. Light  was polarized by  t ransmiss ion 
through polaroid. The crystal  was prepared by  mel t ing 
dibiphenylene-ethylene on a microscope slide, pushing 
a cover down on to the mel t  to obta in  a th in  section, 
allowing the mel t  to crystallize, and paint ing with black 
paint  over all but  a small  area of a single acicular crystal. 
The pleochroism of the crystal  allowed orienting the  
c axis in the  desired manner .  

Cu radiat ion filtered through nickel was used for all 
X- ray  work. Intensi t ies  were es t imated by visual com- 
parison with a prepared scale running from 1 to 4000 in 
a rb i t ra ry  units. Intensi t ies  were corrected by Lorentz 
and polarization factors. The empirical  scattering 
power of carbon in hydrocarbons (Robertson, 1935) was 
used in calculating the structure ampli tudes  and the 
Fourier  series were summed by the method of Pat terson 
& Tunell  (1942). 

The author  wishes to express his deep grat i tude to 
Prof. J.  D. H. Donnay  for proposing this problem and 

for the m a n y  suggestions and conversations tha t  
accompanied the work on it. 
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A detailed study of the effects of secondary extinction is made, with particular stress on the 
behaviour of the virtually non-absorbing crystals introduced by the advent of neutron diffraction. 
The penetration of a beam into a mosaic crystal of this kind will always be complete, and the re- 
lative importance of absorption and extinction is the reverse of that  familiar in X-ray techniques. 
It is found that  with increasing thickness the integrated reflexion of mosaic crystals falls away from 
proportionality to F ~ and, for normal thicknesses, has values of the order of the mosaic spread of the 
crystal expressed in radians. There is a useful range where the integrated reflexion is proportional 
to F, as with the perfect crystal. The discussion leads to an illuminating comparison between 
primary and secondary extinction. Criteria for ' th in ' ,  ' th ick ' ,  'non-absorbing'  and 'absorbing'  
crystals are given. The importance of these results for neutron crystallography is discussed; if  
a technique similar to X-ray goniometry is to be developed, then crystals even smaller than those 
conventional with X-ray technique will be required. For this work the best crystals are those of the 
greatest mosaic spread. 

1. I N T R O D U C T I O N  

In  a recent paper,  Bacon & Thewlis (in the Press) 
discuss neutron diffraction from the point  of view of 
the crystallographer.  They  point  out t ha t  the very  low 

value of true absorption coefficient for neutrons which 
most substances present ent i rely alters the problem of 
measuring structure factors, and leads to different 
results for the integrated reflexions measured in 
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structure-analysis work. For strongly absorbing 
materials, the integrated reflexion from mosaic crystals 
is always proportional to the square of the structure 
factor for the re flexion; but  with non-absorbing 
crystals, unless they are exceedingly thin, the inte- 
grated reflexion takes a value very much less depen- 
dent on the structure factor, and of the order of the 
angular spread of the mosaic blocks expressed in 
radians. 

The theory of secondary extinction as so far de- 
veloped appears to cover only the approximation for 
the case of highly absorbing crystals. In  the present 
paper the theory is generalized to supplement the 
t reatment  given by Zachariasen (1944). The influences 
of structure factor, absorption coefficient and mosaic 
spread are examined in detail, and the consequences 
for neutron crystallography are worked out. 

:For a general introduction to the subject of ex- 
tinction in mosaic crystals, the reader is referred to an 
article by Lonsdale (1947). We may state an essential 
fact: for the reflected intensity to be proportional to 
F ~, where F is the structure factor, the depth of crystal 
contributing to the reflected beam must be small. 
:Now this can come about in two different ways: either 
the crystal itself is thin; or, if it is thick, true absorp- 
tion may reduce the incident intensity so drastically 
tha t  only a surface layer of crystal contributes to the 
reflexion. In  X-ray diffraction the lat ter  case applies 
almost invariably, and the crystal does not need to be 
excessively thin, for it is impossible for the beam to 
traverse a distance sufficient for secondary extinction 
to be serious. The formula for the integrated reflecting 
power under these conditions is the well-known ex- 
pression Q/2/~, # being the true absorption coefficient, 
so tha t  the proportionality to Q and hence to F a is 
assured. 

The linear absorption coefficients of crystals to 
neutrons, however, are generally of the order of 
10 -1 cm. -x as compared with 10 ~ cm. -~ for X-rays, and 
the range of a neutron beam in the crystal will in 
general be very much greater than for X-rays. Severe 
extinction is therefore bound to occur unless the thick- 
ness of the specimen is reduced to a very small value. 
Zachariasen has given the relation between integrated 
reflexion and thickness of a mosaic crystal in a rather 
general case, and followed up the argument for highly 
absorbing materials. The discussion which follows is 
largely an elaboration and development of his equa- 
tions in a more general way to cover the cases intro- 
duced by  the advent of neutron diffraction. 

We shall find it useful to approach the problem of 
secondary extinction with the close analogy to primary 
extinction in mind. For this reason the next section 
will be devoted to a statement of the standard results 
for integrated reflexion from perfect crystals. Through- 
out this paper the integrated reflexions considered are 
for the rotating-crystal method and are denoted by  
R 0 and ~2a for perfect and mosaic crystals respectively; 

it may  be remarked tha t  these differ from the similar 
quantities R x and ~x  in the Laue method only by  a 
factor of 2d cos 0B, so that  ~ = ~ e  2d cos 0 B. In  these 
expressions d is the interplanar spacing and 0 B the 
Bragg angle. 

2. PERFECT CRYSTALS 
A crystal whose structure is perfectly uniform and 
regular throughout is said to be 'perfect ' .  The manner 
in which radiation is reflected from it is examined by  
considering first the intensity of reflexion from a very 
small element of perfect crystal of volume 3V. This 
element is taken so small tha t  only a few per cent of 
the incident energy can be reflected by it. With this 
understanding it can be shown by diffraction theory 
tha t  the integrated reflexion for the rotating crystal 
method from the small element is Q 3V, where 

A3N 2 
Q - - -  KF 9-, 

sin 20 B 
with 

(e~')fe2"~(~la+k~/b+zz/c' for X-rays, F - F x =  ~ 
atoms 

and F -  FN-= ~ /I°'Brag------~gt e2~i{hxla+Tcylb+tzl c) 
a t o m s ~ \  47r / 

for neutrons. 

K, the polarization factor, is ½ (1 + cos ~ 20B) for X-rays 
and uni ty  for neutrons. N is the reciprocal of the unit- 
cell volume, (TBzugg the neutron cross-section for co- 
herent scattering. The crystal structure factor F x is 
tha t  of Bacon & Thewlis (1948) and contains the term 
e2/mc 2. 

As an incident beam of X-rays or neutrons proceeds 
through a larger crystal at  the Bragg angle, its ampli- 
tude is reduced both by actual absorption of the quanta 
(by photoelectric or nuclear capture processes, for 
example) and also by the very fact tha t  some intensity 
is being diffracted and is escaping from the crystal as 
a reflected beam. Thus, even after allowing for the 
effect of true absorption, the deeper parts of the crystal 
contribute less than the upper parts, because energy 
which is incident at  the correct angle for diffraction 
has been removed before it reaches them. Hence, 
quite apart  from absorption, the simple expression Q V 
will not apply over the extended volume, because the 
strength of the incident beam diminishes appreciably 
with penetration. This reduction of the incident in- 
tensi ty is the phenomenon of 'ext inct ion '  

In  a perfect crystal, the extinction of the forward- 
travelling wave may be regarded as due to repeatedly 
reflected components thrown into the same direction 
with opposite phase. At the Bragg angle it is so marked 
tha t  reflexion effectively takes place in a very thin 
surface layer, the penetration distance being of the 
order of 10 -4 cm. for both X-rays and neutrons. 
Extinction in this form, due to a perfectly ordered 
structure of scattering units, is called 'p r imary ' .  
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True absorption in such a thin layer is negligible, and 
was assumed to be zero in the classical derivation of 
the diffraction curve by Darwin and Ewald. The 
diffraction curve is the one showing the variation of 
total  diffracted energy with angle of incidence, and for 
a non-absorbing crystal of infinite thickness takes the 
familiar form shown by  Zachariasen (1944, p. 129). 
Total reflexion takes place over an angular range of 
2s, where 

s - - - -  F 
~" sin 20 B 70 

which usually amounts to a few seconds of arc, and 
7o, 7H are the direction cosines of the incident and 
diffracted beams with respect to the inward normal to 
the plate. The integrated reflexion is 

~v JI 7HI 
sin 2-----~B F 7o 

The effect of extinction is exhibited most clearly by 
the function which shows the dependence of the in- 
tegrated reflexion on the thickness for Bragg reflexion 
from the face of a finitely thick crystal plate. I t  is 
given (Zachariasen, 1944, equations 3.167 and 3.143) 
for each component of polarization by 

f ~ dy 
R ° = s  _~ y~+ (1 _yg.) coth ~. [A(1-y~)]  

= rrs tanh A. (1) 

A is equal to s'to/rrTo, where s s '=  Q and t o is the thick- 
ness of the crystal plate. Both s and s' are directly 
proportional to the structure factor F.  

4 3/  
1 

0 20 
s'~/¥0 

Fig. 1. Dependence of the integrated reflexion Re from a 
finitely thick non-absorbing perfect crystal plate on the 
thickness and structure factor. 

The variation of RO/s with ~A is shown in Fig. 1. 
to~To is the effective ray  path through the crystal, and 
the figure shows clearly how the integrated reflexion 
depends upon this quant i ty  and upon the structure 
factor. The par t  of the curve close to y = x is the region 
where RO/s = s't0/70 , i.e. where the formula Q V applies; 
at  thicknesses corresponding to the knee of the curve 
pr imary extinction begins to set in, and where the 
curve approaches the horizontal, extinction is virtually 
complete and the crystal is effectively infinite. Since 
s' is proportional to F the penetration distance into 
a thick perfect crystal can be seen to be inversely 
proportional to the structure factor. 

3. MOSAIC CRYSTALS 

Most crystals are very far from perfect, and the ideal 
lattice regularity is restricted in them to very small 
regions, the boundaries of which are fixed by dis- 
tortions and displacements in the structure. These 
crystals are called 'mosaic ' ,  and the reduction of the 
beam in their interior will be controlled by the type 
of mosaic structure, including the orientation function 
of the mosaic ' blocks'. Screening of a lower block by 
an identically oriented block nearer the surface will 
still occur, but  the effect will be much less marked in 
the mosaic crystal, since intervening blocks will have 
different orientations and will not reflect at  the same 
inclination of the incident beam. Moreover, since re- 
flexions from the blocks at  different depths are not 
coherent, the limitation of the forward-travelling wave 
to such a thin surface layer no longer occurs; and while 
extinction of the incident beam must take place, it may 
be expected on this account to be far less severe than 
in the perfect crystal. I t  will be shown below tha t  the 
thickness of mosaic crystal for which the formula Q V 
holds may be more than a hundred times tha t  for a 
perfect specimen. Extinction in this form is said to be 
' secondary '. 

Naturally,  if the mosaic blocks are large enough, 
pr imary extinction will occur within them, and if both 
forms of extinction are present simultaneously it will 
be very difficult to estimate the proper correction to 
the apparent  structure factor. I f  secondary extinction 
alone is to take place, as is desirable, then the mosaic 
blocks mus t  be  small  compared with the penetration 
distance for pr imary extinction. The crystal is then 
said to be ' ideally imperfect '  

To arrive at  the law relating the integrated reflexion 
from an ideally imperfect crystal plate to the thickness 
and structure factor, the penetration of the crystal by 
the incident beam will be discussed. The diffraction 
curve for a crystal plate of thickness t o is next obtained, 
from which the integrated reflexion follows. We shall 
first t reat  substances having zero absorption at  some 
length so as to fix at tention on the phenomenon of 
secondary extinction alone, and to bring out the 
physical principles concerned. 

Crystals  o f  zero absorpt ion  

Solution of the equations governing reflexion 

Before setting up the equations governing the in- 
tensi ty of the radiation within a mosaic crystal, 
Zachariasen obtains an expression for the reflectivity 
~, which, owing to the mosaic disorientation, is a 
function of the mean glancing angle 0. The mosaic 
block angular distribution function W is defined so 
tha t  W(A) dA is the fraction of mosaic blocks having 
their normals between the angles A and A + dA to the 
normal to the crystal surface. I f  now o'dt is the re- 
flecting power of a layer of mosaic blocks, the thick- 
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n e s s  of the layer being dr, then (Zachariasen, 1944, 
equations 4.20 and 4.33) 

Q W(O-eB). (2) O ' z - -  

~0 

Y0 is the direction cosine of the incident beam relative 
to the inward normal to the crystal face, and is equal to 
sin 0 B in the case of symmetrical reflexion. For want 
of a better assumption, W(A) is taken to be gaussian 
with cylindrical symmetry and is written 

1 
W ( A ) -  ~]~/(27r) e--h~'/2r/"' (3) 

~/ being the standard deviation. Formula (2) above 
assumes that  ~/>> s. 

The equations governing Bragg reflexion from an 
ideally imperfect crystal plate having zero absorption 
may now be written down for the case where the 
reflected beam emerges from the face of incidence as 
in Fig. 2 (a). I t  will be seen that  there is no implication 

i ~ ' - v  I[ '0 
/ 

(a) Reflexion method (b) Transmission method 

Fig. 2. Diagrams to illustrate the reflexion and transmission 
methods referred to in the text. 

that  the reflecting planes are parallel to the face of 
the crystal. Let ~0 and ~ H  represent the power of 
the incident and diffracted beams respectively at a 
depth t below the surface of the crystal of thickness t 0. 
Then d~o=~.~dt-~o~dt, l 

d~H=~B(rdt_ ~oo.dt. ~ (4) 

The boundary conditions are that  ~0 assumes the 
value of the incident intensity ~0(0) at t = 0, and that  
~ is zero at t = t 0. I t  follows that 

~0(t) =~0(0 ) 1 +cr(to-t ) (5) 
1 +~t  0 

controls the strength of the forward-going beam at the 
depth t from the crystal surface; and that  the reflecting 
power is given by the function 

~ ( 0 )  o% 
• ~o(0------~ - -  1 + ~ "  (6) 

These two results will now be discussed separately. 

Penetration of the beam into the crystal 
Equation (5) shows that  the reduction of the in. 

tensity of the beam within the ideally imperfect 
crystal is linear with distance, and depends upon the 
total thickness of the crystal. The effect is illustrated 
for crystals of two different thicknesses in curves (i) 

and (ii) of Fig. 3 (a). The figure shows that  if a mosaic 
crystal slab, say 1 cm. thick, is set up for Bragg re- 
flexion of neutrons, the reflected beam will be very 
intense and will spring from all depths of the specimen; 
if an extra 1 cm. slab is brought up behind the first, 
it too will be a source of appreciable reflected power, 
even though the first crystal was already giving nearly 
100 % reflexion. The ingoing beam therefore ranges 
throughout the mosaic crystal, in contradistinction to 
the case of the perfect structure. 

The physical meaning of this result is interesting. 
Suppose that  the second crystal in Fig. 3 (a) is removed 
some arbitrary distance behind the first, and to begin 
with is turned away from the Bragg angle. Then the 
incident beam follows the line (i) and the beam incident 
on the second crystal will be transmitted completely. 
I f  the second crystal is now adjusted for Bragg re- 
flexion, the beam previously transmitted through it 
will undergo multiple reflexion between the two 

1 1 
cm. cm, 

(i) 
I I ~ , . . . .  . ; ( . )  

(a) Thickness of crystal (b) Thickness of 
traversed by beam crystal traversed 

Fig. 3. The intensity of the incident beam: (a) within ideally 
imperfect crystals of two different thicknesses, having zero 
absorption, under conditions of Bragg reflexion; and (b) with- 
in a similar crystal when the diffracted beam emerges from 
the back. 

crystals. Owing to the absence of phase relationship 
between the beams, however, the intensities of the 
components travelling between the two crystals all add, 
so that  the intensity actually builds up to the appro- 
priate height given by curve (ii). The phenomenon is 
therefore analogous to resonance, but without de- 
pendence on phase. On the other hand, if thin perfect 
crystals could be used for this experiment, the precise 
separation between the two crystals would be of vital 
importance, just as in the optical analogue of reflexion 
between half-silvered mirrors. 

From equations (2) and (5) together the transmitted 
intensity can be seen to be reduced by the factor 

1 + %  w(o-oB! , (7) 
~0 

evaluated for the particular angle of incidence 0. 
The case of the transmission method, in which the 

diffracted beam emerges from the back of the crystal 
plate, can be treated in an exactly similar way 
(Fig. 2 (b)). We shall merely remark that  the incident 
beam behaves within the crystal according to 

~ o ( t )  = ½,.~o(0) (1 + e-~°'t), (8) 
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as shown in Fig. 3 (b). The complete penetration of the 
beam is even more noticeable than in the reflexion 
method of Fig. 3 (a). 

The diffraction curve 
Equations (6) and (2) give the diffraction curve as 

the variation, with angle of incidence, of the ex- 
pression 

t° W). (9) 

According to this, the width of the diffraction curve 
for a mosaic crystal depends primarily upon the 
angular spread of the mosaic blocks, which in practice 
is usually between ten and some two hundred times 
the angular width of the diffraction curve for the 
perfect crystal. I f  the maximum amplitude reflected 
from the crystal is small, the denominator of (9) is 
effectively unity, and the curve takes the gaussian form 
of the mosaic block angular distribution function. 

1 Qto 

, 50 

-5)7 0 57 
0-0a  

Fig. 4. Diffraction curves swept out by the beam reflected 
from the face of a non-absorbing ideally imperfect crystal 
plate as the crystal is rotated. 

With a powerfully reflecting crystal, however, the 
diffraction curve is flattened off preferentially over the 
range of intense reflexion. Fig. 4 shows the curves for 
both weak and strong reflexions. Over any angular 
range of incidence for which the two terms in the 
denominator become comparable, owing to a suffi- 
ciently great t 0, Q, or small 7, the ordinates fall below 
those appropriate to a gaussian form and the curve is 
noticeably flattened. Where this occurs, secondary 
extinction is prevailing; and this distortion of the 
curve is the essential characteristic of the extinction. 

The integrated reflexion 
The integrated reflecting power ~0 from a rotating 

crystal is obtained by integrating the above reflecting 
power (9) over the whole extent of the diffraction 
curve. Thus 

f _\ W(A)/{ l +Q 4yo W(A)}]dA. (10) 

I f  the peak (per cent) reflexion is small, the variable 
term in the denominator may be ignored; and since 
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f ~ W ( A ) =  integrated reduces to the dA. 1 the reflexion 
- - C O  

normal formula Q V and is consequently proportional 
to F% Where extinction prevails, however, the in- 
tegrand is reduced below the value which gives Q V 
and the integral falls away from that  value. 

The dependence of the integrated reflecting power 
on the various parameters can be shown most simply 
by plotting ~e  against Qto/Yo for crystals of different 
mosaic spread, it being noted that  Q and t o are always 
associated in the form of their product in (10). The 
resulting curves are given in Fig. 5. As expected, the 
curves show that  as Qto/To is increased ~8 departs from 
linear proportionality at values determined by the 
degree of the mosaic spread. The departure is greatest 
for crystals with the best oriented blocks, because, over 
the diminished range in which reflexion occurs in such 
a crystal, extinction will be correspondingly more 
marked. With increasing thickness the integrated re- 
flexion calculated from (10) rises slowly to infinity, the 
crystal being non-absorbing. 

5 x 10 -3 r/ 

15' ~;x J 

/ /  st 
~e 

I'=3 × 10 -4 
radlans 

q to/Vo s ×Io-3 
Fig. 5. Dependence of the integrated reflexion G 0 on the 

thickness and structure factor, for refloxion from the face of 
finitely thick non-absorbing ideally imperfect crystal plates 
of ~Lfferent mosaic spread. 

Criterion for a thin crystal 
A ' th in '  crystal may be defined as one for which the 

integrated reflexion is within 5 % of the value Q V. I t  
is found numerically that  this happens when the value 
of the term Q Wto/To is less than 0.1 at the peak of W. 
Thus for a ' th in '  crystal 

The criterion brings out the well-known point that  
extinction is greatest for the stronger reflexions, and 
that  the same crystal may be ' th in '  for some reflexions 
and ' th ick '  for others. 

The order of magnitude for t 0 for a thin crystal in 
practice may be illustrated by the example of the (200) 
reflexion of magnesium oxide, whose true absorption 
coefficient for neutrons is only0.02 cm. -1. ForA = 1.5A., 
Q=0.02; and we shall suppose ~ to be 5', i.e. 1.5 x 10 .3 
radians, and T0=0"4, say. Inserting these figures in 
(11), we have that  for a ' th in '  crystal, 4<0"1 mm. 
which would be exceedingly small for goniometric 
work. 
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Behaviour of a thick crystal of  zero absorption and the 
possibility of structure analysis 

I t  was shown above that  the integrated reflexion 
increases without limit with Qto/~o. The physical 
meaning of this is easily understood. As thicker and 
thicker crystals are considered, the second term in the 
denominator of (9) becomes appreciable over an ever- 
increasing range of A; that  is to say, there will be 
enough mosaic blocks at orientations further and 
further from the peak of the angular distribution to 
reflect all the beam. With increasing thickness there 
will eventually be found sufficient blocks even at 
relatively large angles away from. the peak. Therefore, 
over ~ range of thicknesses well past the region of the 
Q~  law, the amplitude of the diffraction curve will 
tend to approach unity over the whole of the angle 
within which the mosaic blocks predominantly lie. 
The integrated reflecting power will then depend 
primarily on ~], and comparatively little on Q, a cir- 
cumstance under which structure analysis would be 
imposs ble. 

Criterion for a thick crystal 
We may also obtain from the above equations the 

criterion for an 'effectively infinite' crystal. Since 
with zero absorption there is no limit to the integrated 
reflecting power, a thick crystal cannot be defined as 
one whose integrated reflexion is close to the limiting 
value for infinite thickness. Instead, we take the 
arbitrary definition that  the peak reflexion (i.e. the 
maximum value of the integrand in (10)) is to be 
greater than 0.95; it follows that  

to > 50~ (12) 
70 Q "  

In the practicM example of magnesium oxide this 
means that  t o > 1½ cm. Evidently in a large number of 
practicM cases in which Bragg reflexion might be 
required, a crystal of practical size may be expected to 
be of intermediate value with regard to thickness. 

Criteria for non-absorbing and absorbing crystals 
Before passing on to the completely general case it 
will be valuable to see what orders of magnitude would 
be implied in applying to practical cases the distinction 
we made between absorbing and non-absorbing 
crystals. The criteria for thickness above were obtained 
by considering the integrated reflecting power of 
crystals having zero absorption; the influence of true 
absorption may conveniently be examined in a pre- 
liminary fashion by taking another extreme case, the 
infinitely thick crystal. The strongly absorbing crystal 
will then be the one in which the beam is greatly 
reduced before penetrating the critical distance for 
extinction, the weakly absorbing one that  in which 
secondary extinction invalidates the Q V law belore 
the beam has been absorbed. 

The effective absorption coefficient for the reduction 
of a beam in which both true absorption and diffraction 
processes take part is # + Q W  (Zachariasen, 1944, 
equations 4.31 and 4.33). The two terms in the coeffi- 
cient separately represent the two processes, and their 
magnitudes express the relative importance of the 
separate effects in extinguishing the beam. Strongly 
and weakly absorbing crystals as defined by our above 
argument will therefore be those for which # is re- 
spectively greater and less than the peak value of Q W, 
namely Q/y~/(2rr). 

Absorbing crystals 
The diffraction curve for symmetrical reflexion from 

the face of an infinitely thick absorbing crystal has 
been given by Zachariasen (1944, equation 4.27). 
Manipulating his result into a more convenient form, 
and taking the integral, we have 

1 17 ...} dA. 
! 

(14) 
I f  # is large, both the logarithmic and hyperbolic 
functions behave in a nearly linear manner and, as can 
be seen directly from the series expansion, the inte- 
grand is equal to Q W/2#; the integrated reflexion is 
then the familiar Q/2#. This is the normal X-ray case 
where true absorption predominates over secondary 
extinction and prevents the beam from penetrating a 
distance large compared with the ' thin cry~tal' dis- 
tance of y/4Q. For X-rays a typical value of # is 
100 cm. -1, which would cause a reduction of beam 
intensity to ½ after a distance of 0.1 mm. 

A reasonable definition of an 'absorbing' crystal 
is one for which ~e  is within 5 % of the value Q/2#. 
Calculation from equation (13) shows that  this holds 
if 

> 4Q/~?. (15) 

I t  is to be noticed that  the minimum absorption 
coefficient allowed by (15) is just the reciprocal of the 
thin-crystal distance (11). This is because only a truly 
thin surface layer can be permitted to take part  in the 
reflexion if the integrated reflecting power is to remain 
proportional to Q. 

'Non-absorbing' crystals 
A set of diffraction curves very similar ~o those of 

Fig. 4 could be drawn for thick mosaic crystals of 
different absorption, the highly absorbing ones having 
diffraction curves similar to the thin non-absorbing 
crystals of the previous discussion. As # is decreased 
the diffracted amplitude increases everywhere and the 
curve changes from one having the gaussian shape to 
the larger curve with the flattened top. This flattening 
occurs, mathematically, since the two functions in (13) 
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fall off progressively from linear proportionality as 
their arguments are increased. 

The a t t empt  to define a 'non-absorbing'  crystal 
from considerations of the thick model encounters the 
same difficulty as the thickness criterion for crystals of 
zero absorption given in (12). I t  is not possible to say 
tha t  a non-absorbing, infinitely thick crystal is one in 
which the integrated reflexion approaches the limiting 
value as/~ is decreased. The assumption of an infinitely 
thick crystal, however, destroys any connexion between 
the proposed criterion and the definitions of thin and 
thick crystals, whereas the practical need is for a 
criterion of non-absorption in finite crystals which will 
ensure tha t  the criteria (11) and (12) are close to the 
truth.  Since an arbi t rary definition must be made, 
we choose to describe a 'non-absorbing'  crystal as one 
having an absorption coefficient less than the reciprocal 
of the thick-crystal distance (12). Such a low absorp- 
tion will certainly permit the radiation to enter suffi- 
ciently far to undergo the severe extinction essential 
to the concept of the ' th ick '  crystal. Thus for a non- 
absorbing crystal, 

ta < Q/50~. (16) 

Taking, as before, Q=0.02 cm. -1 and ~]=5', we obtain 
for the two extremes: 'non-absorbing'  crystal, 
# < 0.3 cm. -1, ' absorbing'  crystal # > 50 cm. -1. A typical 
value of # for neutrons is 0.3 em. -1, which is the value 
for copper; very weak absorbers such as MgO have 
# = 0.02 cm.-1; while a substance such as LiF (which 
contains the highly absorbing element lithium) has a 
# of about 4 cm.-1. Compounds containing cadmium 
and certain other substances have absorption coeffi- 
cients of 100 cm.-1 or more. 

I t  follows from the limits given above tha t  many 
practical cases in neutron crystallography will be inter- 
mediate in absorption as well as thickness, and the 
most useful information will be tha t  obtained from the 
general solutions now to be examined. 

G e n e r a l  t r e a t m e n t  o f  i d e a l l y  i m p e r f e c t  c r y s t a l s  

Zachariasen (1944, pp. 162-3) has solved equations 
similar to (4) containing an absorbing term, assuming 
plane parallel plates for both the crystal and the 
mosaic blocks. He distinguishes between what  he calls 
the Bragg case and t ae Laue case, which we shall 
continue to call the reflexion method and the trans- 
mission method respectively, to avoid any suggestion 
tha t  white radiation is being used in the latter. The 
two methods give different diffraction curves, owing to 
the fact tha t  in the transmission ease all rays traverse 
the same thickness of crystal, unlike the reflexion case 
in which some of the diffracted beam does not have to 
pass through very much material. These diffraction 
curves are similar only when/~t 0 and Qt o are both small, 
tha t  is, when the total  diminution of the beam in the 
sample is small. 

I f  the crystal is absorbing, the integrated reflexion 

ACI 

obtained will depend on the angle between the re- 
flecting planes and the surface of the slab. Zachariasen 
works out his results for the symmetrical disposition in 
which the incident and diffracted beams make the 
same angle to the face of the crystal plate. The general- 
ization to the case of reflecting planes not parallel to 
the surface will be discussed at a later stage. 

Once more recasting the formulae of Zachariasen 
(1944, equations 4.24 and 4.25), the integrated re- 
flexions for an ideally imperfect crystal can be written 
in the form of integrals over the diffraction curves: 
Reflexion method: 

f ~  adA (17) #2e= ~(l+a)+~/(l+2a)coth[A~/(l+2a)]'  

Transmission method: 

No=  sinh (Aa) e-~(l+a)dA, (18) 

where A now equals l~to/Yo, and 

Q Q 1 
a = -- W - -  e -A2/2~2. 

/~ /~ ~/(2~) 

The expression for ~0 in the reflexion case may  be 
compared with R e, the same quant i ty  for a perfect 
crystal which was given in (1). 

Now we may write the integrand in either case as 

~o=¢(#to, l Q, A)., (19) 
\ 7 0  ~]# 

Y o~ 

since y is constant over the integration. Therefore 

1 ~2e= ~ (# t  o 1Q) (20) 

Calling this ~(A, B) it is possible to plot ~0/y for 

various values of A =#t0/Yo against AB = 1 Q to. Q and 

t 0 being thus once more associuted in the abscissa, 
these curves may be expected to possess a common 
part  in the region of small secondary extinction. 

The ~0 curves obtained in this way appear in 
Fig. 6 (a) for both the reflexion method (full lines) and 
the transmission method (broken lines). As Qto/'/o is 
increased, the integrated reflexion increases according 
to the simple law Q V and then begins to fall off under 
the joint influences of secondary extinction and 
absorption. (In the lowest curves the common par t  
close to y=x  is too small to be seen.) The effect of 
varying the mosaic spread of the crystal is simply to 
alter the scale of the axes in such a way that ,  for a 
given Qto/~o value, the line y = x corresponding to the 
thin crystal approximation is held more closely, and 
for stronger reflexions, the greater the disalignment of 
the mosaic blocks. The first practical conclusion from 

2 0  
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the general argument is therefore tha t  in single-crystal 
work specimens of the widest mosaic spread are 
advised. 

The intrinsically higher reflectivity of the reflexion 
method results in the curve for a given lato/Yo value 
always lying above the corresponding curve for the 
transmission method. For thin crystals, however, with 
the total diminution of the beam small, the solutions 
are very close. In  the case of zero absorption we can 
compare the series expansions for the refiectivity in 
the two cases. For transmission, the integrand in (18) 
gives 

reflectivity = (~0) - (¢t0)~ + ~(O~o)8- .... (21) 

For reflexion we have from (6) 

reflectivity = (qt0) - (o~0)~ + (~t0)s- .... (22) 

These expressions result in the divergence between the 
two types of integrated reflexion measurement being 
less than 5 % at  a thickness of eight times the ' th in  
crystal '  distance of (11). 

Refl. Trans. 

/ . . . . . . . . . . . . .  o 

.......... 22 ............ 1 

1 

1" 

~-qyo 
{a) 

any given experiment the other factors are fixed. 
However, given the measured absolute value of the 
integrated reflexion, the exact determination of Q from 
the appropriate/~to/To curve involves a knowledge of 
~], a not easily measured quanti ty.  For this reason, 
practical use of the curves for accurate determination 
of Q beyond the linear portion is rather restricted. 
However, it may  be noted tha t  ff the extinction is not 
too severe, the fractional error in Q, as read from the 
curves, will be very considerably less than the fractional 
error in ~] ; so tha t  even a rough value of y can be better 
than a total  disregard of the extinction effect. A 
possible way of making a measurement of 7/ in a 
minute crystal may  be described in a later com- 
munication. 

A major practical application of the curves is tha t  
of deciding upon the maximum thickness of crystal 
which can be permitted in a proposed investigation of 
a crystal which is not strongly absorbing. For this 
purpose they  are recast into the form of Fig. 6 (b), where 

~ p  
Refl. Trans. 

3 (b) 

10 

1 

5 10 
1 to 
~'Q yo 

(b) 
Fig. 6. The in tegra ted  reflexion ~0  f rom ideally imperfec t  c rys ta l  p la tes  as  a func t ion  of  thickness,  s t ruc tu re  factor ,  

absorp t ion  coefficient and  mosaic  spread.  Ful l  lines, symmet r i ca l  reflexion me thod ,  Yo = s i n  0~; b roken  lines, 
symmet r i ca l  t ransmiss ion me thod ,  Y0 = cos 0 B. U n s y m m e t r i c a l  m e t h o d s  are  discussed in the  tex t .  

~ooo 
.100 

tO 

Use of the curves 

In  examining Fig. 6 (a) and later figures, Table 1 will 

be found useful. This gives values of 1 Q t o for various 
Y0 

combinations of ~7 and to, for the particular values 
Q = 0.02 cm. -z and 7o = 0-4. I t  will be seen tha t  practical 

cases cover a very wide range of values of I Q to. The 

curves of Fig. 6 (a) are drawn only for the range 0-10 
where the dependence of integrated reflexion on Q is 
fairly strong. At the abscissa 10, ~a  has at tained a 
value of a few times y as already predicted in a previous 

section. With further increase of 1 Q to, ~o rises more 
Yo 

and more slowly; in the case of the curve for/~ = 0, ~0 is 
multiplied by a factor of only 2 when the abscissa is 
increased from 10 to 200. 

The curves of Fig. 6 (a) could, in theory, be used for 
deriving Q values from measured reflexions, since in 

1 t 0 
Table 1. Values of ~ Q ~ when Q=O.02 and 7o=0.4, for 

various values of t o and y 
Value  of  ~] 

1' 5" 15' 
Value of  t o 
0.1 mm.  1-6 0-3 0.1 
1 ram. 16 3.2 1.1 
1 czn. 160 32 11 

1 to for various values of ~01~/ is plotted against ~ Q Yo 

1 Q  
- - .  I f  the maximum Q value expected in a crystal 

analysis is fixed upon, the curves provide the greatest 
value of t o which does not incur an intolerable amount  
of extinction. 

As an example of the use of Fig. 6 (b), the criterion of 
' thinness '  for non-absorbing substances, equation (11), 
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1Q 
can be checked with it. Selecting the cu rve -  - -0% 

the abscissa at which the integrated reflexion departs 
from y = x by 5 % can be read off at  once. I t  can also 
be seen tha t  there is negligible increase in this 5 % 
departure if the criterion of 'non-absorption'  made in 
(16) is satisfied. 

Travelling outwards along the curves in Fig. 6 (b) 
corresponds to taking a thicker and thicker crystal of 
fixed Q, # and y. The lower curves for the reflexion 

method, which have small values o f - - , 1  Q rise quickly 

lO ~°=Q/2~ 

1 

10-' 

10-z 

I0-3 , , 
10 -3 10 -2 I0-' I 10 II0 2 0 3 

i Q 

;I 2# 

Fig.7. The relation between Q/~ and ~he inte~a~d re~exio~ 
~o for symmetrical reflexion from an ideally imperfect 
crystal of infinite thickness. 

10~ ~;1/e~.o~ J 

,5, o 1 

,--I ~ -10_  ~ 

10 -~ 

10-~ ' '0 ' '0 ' 10 -~ 10 -z I -~ 1 I 10 z 10 ~ 

Fig. 8. Curve giving the thickness ~0o~ t. for maximum integrated 
reflexion from an ideally imperfect crystal plato by the 
symmetrical transmission method, taking account of secon- 
dary extinction. 

to the limiting value Q/2#. This point is brought out 

in Fig. 7, where Yl ~ is plotted against ~ ~ for an 

infinitely thick crystal. For small values of Q/2# (as 
in the X-ray case) ~ = Q/2/~, whereas for larger values 
of Q/2#, as frequently in the neutron case, the in- 
tegrated reflexion falls away from tha t  quantity, and 
remains a small multiple of ~/ over a wide range of 
values. I t  may be pointed out tha t  for a limitingly 
large crystal, such as is assumed in Fig. 7, decreasing # 
is equivalent to increasing the effective thickness of 
crystal taking part  in the reflexion, so tha t  the shape 
of the curve in Fig. 7 is similar to tha t  of the topmost 
curve of Fig. 6 (b). 

For the transmission method, Fig. 6 (b) shows how 

the integrated reflexion eventually falls to zero with 
increasing % in all cases where the true absorption is 
finite. The locus of the maxima is a curve giving the 
optimum thickness of mosaic slab fo.r a crystal of given 
Q, # and y. A calculation of this thickness ignoring 
secondary extinction is already familiar (Compton & 
Allison, 1935, pp. 418 and 422), and gives the value 

t o (optimum)=l/#secO B. In Fig. 8 the 1 Q~0 value 
Y0 

of the maximum integrated reflexion is shown ac- 
cording to the general theory; past the region of the 
thin-crystal law the optimum thickness of slab is 
reduced below 1//~ sec OB by the added consideration of 
secondary extinction. 

4 

~ 3  

~ Z  

1 

Ideally imperfect c ~  
~ f  to 77 

~ Perfect crystal-'~ 

I I 
10 20 30 
1 to 1 to  
TQ7, ° or ~ Q )'0 

Fig. 9. Curves showing the effects of primary and secondary 
extinction on the integrated reflexion, by the reflexion 
method, from perfect (Ewald approximation) and ideally 
imperfect crystal plates. 

Unsymmetrical diffraction from plane parallel plates 
The general t reatment  given so far has been re- 

stricted to the symmetrical case, in which the re- 
flecting planes are either parallel or perpendicular to 
the surface of the crystal plate. I f  the planes are 
ob];quely inclined, it is obvious that  the average paCh 
length within the crystal will be greater for the same 
r'eflexion, and different values for the integrated re- 
flexion from an absorbing crystal must be expected. 
A calculation taking this into account will therefore 
involve 70 and YH, the direction cosines of the incident 
and diffracted beam vectors referred to the i~. ~rd 
normal to the surface. 

The equations (4.21) of Zachari r J n  (1944) may be 
solved without the simplifying condition ~,0= I7HI .  
The result in the reflexion method is simply tha t  # in 
equation (16) and Figs. 6 and 7 is everywhere to be re- 

placed by # ' - - #  ½(1 +y0/I ~'H I); (23) 

the unsymmetrical reflexion method is therefore 
covered by the general discussion above. In  the trans- 
mission method, however, the reflecting power comes 
to 

O" sinh [(q~ + #~/G2)½ to] e -(¢+~/r)t°, (24) 

with 
~=QW, 1 1 / 1 +  1 ~ 1 1 ( 1  1 ) 

% r = 2 ~ o  ] - ~ ] ] '  and ~ = ~  ~0 I~HI ' 

2 0 - 2  
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which is to be compared with the integrand of (18). 
Unfortunately, this new expression is not assimilable 
to (18) by any simple device, so that  Figs. 6 and 8 cease 
to apply in the unsymmetrical transmission method, 
and must be" redrawn in every instance. 

4. P R I M A R Y  A N D  SECONDARY EXTINCTION 

The integrated reflexion curves which have now been 
plotted for non-absorbing crystals of both perfect and 
ideally imperfect types permit a rather illuminating 
comparison to be made between the primary and 
secondary extinction effects. We may consider first the 
refiexion method of Fig. 2 (a). The ideally imperfect 
crystal curve in Fig. 9 is the same as that  for # = 0 in 
Fig. 6; the other curve is taken from Fig. 1 for the 
perfect crystal. The two have been brought together 
in the following way. The abscissa of Fig. 1, dto/To, has 

been written 1 Q to. Comparison of the axes of the 
s 70 

two graphs shows that  the variables are similar in 
form, with s replaced in the mosaic crystal by ~1. Both 
s and y measure the width of the diffraction curve from 
the tryst rl, but in the mosaic crystal the width of the 
angular ,~pread of the mosaic blocks has become an 
independent quantity, being, unlike s, not dependent 
on the structure factor. The graph for the ideally 
imperfect crystal is on a relatively smaller scale, as the 
relation y >> s is implicit in the theory. 

Fig. 9 exhibits the essential contrast between the 
two forms of extinction. As the thickness of the crystal 
plate is increased, the characteristics of secondary ex- 
tinction appear in the slower departure from the thin- 
crystal law, the rounder knee in the curve and the 
steady travel to infinity of the integrated reflexion. 
Both forms of extinction result in an early departure 
from the Q V law with a subsequent reduction in the 
slope of the curve. On the other hand, where secondary 
extinction alone prevails, far greater Qt o values are 
covered by the thin-crystal approximation. In practice, 
y is of the order of 5', s 5", of arc, so that  at an 
abscissa in Fig. 9 where the curves still approximate 
to the line y = x the allowable value of t o for the same Q 
is some sixty times greater for the imperfect than for 
the perfect crystal. 

With regard to the dependence of the integrated 
reflexion on the structure factor, the shapes of the 
primary and secondary extinction curves have different 
meanings, because s is directly proportional to F itself 
while 7/is not. For both curves the part close to y = x 
indicates a proportionality of integrated reflexion to 
F 2. With primary extinction, where the curve is 
virtually horizontal, extinction is practically complete 
and the integrated reflexion is proportional to F,  
whereas the same result for the ideally imperfect 
crystal would demand a parabolic shape for the secon- 
dary extinction curve. 

As it happens, the approximation to a parabola is 
very close in the reflexion method over quite a large 

range of practical cases. The integrated reflexion curve 
is within 5 % of the parabola ~e = 0.96 (~Qt0/7o) ½ over 

the range 1.9-13 of I Q to. Over this range, therefore, 
70 

we may conclude that  on the assumption of a gaussian 
angular distribution of mosaic blocks, severe secondary 
extinction in non-absorbing ideally imperfect crystals 
results in the integrated reflexion from a face being 
proportional to F,  in analogy with the same rule for 
severe primary extinction. The constant of propor- 
tionality, however, could only be predicted if y were 
measured. In the next section, an experimental con- 
firmation of this result will be quoted. 

I t  is shown by Zachariasen (1944, p. 134) that  the 
integrated reflexion curve for the perfect crystal using 
the transmission method oscillates with diminishing 
amplitude about its final ordinate ½~. The ideally 
imperfect crystal curve for transmission, however, re- 
tains the steady form as shown in Fig. 6. The approxi- 
mation to a parabola is here ~ °  = 0"85 (yQto/7o) ½ and is 
accurate to 5 % only over the smaller range 1.3-6.1 in 

1oto .  
7o 

5. N E U T R O N  C R Y S T A L L O G R A P H Y .  

A difficulty of neutron diffraction work at the present 
day is the comparative weakness of the available 
sources of neutrons. Consequently, particular interest 
attaches to those methods of procedure which permit 
the largest crystal specimen and hence the most 
powerful diffracted beam. 

I t  must also be stressed that  the case of neutron 
diffraction involves quite a different appro~mation in 
crystallographic theory from that  of X-rays. As we 
have seen, absorption is large or small according to 
whether # is large or small compared with Q/~l~/(2n). 
This quantity is roughly of the order of magnitude 50 
for X-rays and 5 for neutrons. With X-rays # is of the 
order of 10 ~ cm. -1, but with neutrons it is usually of 
the order of 10 -1 cm. -1. 

The major consequences of this fact are those pointed 
out in § 3, that  the neutron beam can always be 
expected to range throughout the crystal and that  the 
relative importances of absorption and extinction are 
the reverse of those familiar with X-rays. In  the 
highly absorbing case, the incident beam is limited to 
a thin surface layer, and the integrated reflexion for 
' th ick '  mosaic crystals is Q/2#, remaining proportional 
to F ~ just as in a small crystallite. For neutrons, how- 
ever, this does not apply, and the integrated reflexion 
is a complicated function of Q, # and ~/. 

Now if ~0/~/is a simple function of Q of the form 
aQ b, then the ratios of a series of values of integrated 
reflexion measured in arbitrary units are sufficient to 
provide the ratios of the respective Q values. But ff the 
function of Q is any more complicated than aQ b, it 
will not be possible to deduce relative Q's'from a set 
of relative ~0 readings without absolute measurements 
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of some kind. There are two regions where the relation 
between ~0 and Q is simple. These are the regions 
where ~0 is very nearly proportional to Q½, and where 
the ' th in  crystal law' ~e  = Q V is valid. 

Large crystals 

In the reflexion method for a large mosaic crystal 
slab the Qt law holds to within 5 % over about a seven- 

fold range in 1 Q t o - - as mentioned in the previous 
Y0 

section. Table 1 shows tha t  practical values of t o can 

be chosen such tha t  -1 Q -t° will lie in this range for a 
~] ~0 

large variety of combinations of Q and ~?. For example, 
a crystal 1 cm. thick would give proportionality to Qt 
over a range of Q from 0.003 to 0.02 if y were 15': if 
were only 1.5', then the same range would be covered 
by a crystal 1 mm. thick. The values are calculated 
for Y0 = 0.4. 

This conclusion explains a result given by Fermi & 
Marshall (1947) in their work on the single-crystal 
reflexion 'of neutrons, which was very puzzling as 
stated in their account. They found tha t  the reflectivity 
was more nearly proportional to the structure factor 
than  its square, i.e. to Qt rather than to Q. This could 
at  first sight be taken as indicating primary extinction 
and perfect crystals, which would be surprising. How- 
ever, as we now see, the readings are quite compatible 
with the idea tha t  their crystals were mosaic. 

In  fact, Fermi & Marshall measured an instantaneous 
peak intensity, and in the absence of experimental 
details it is difficult to decide whether this would t ruly 
represent the maximum ordinate of the diffraction 
curve, or whether it would more nearly correspond to 
an integrated reflexion. In  any case, the dependence of 

1 t o 
the maximum ordinate on - Q -  is very similar to 

tha t  of the integrated reflexion in the range of values 
concerned and has an appreciable, though slightly 
smaller, parabolic region. If  the series of intensity 
readings given in their Table 1 is plotted against Q/~o, 
the resulting curves are found to include various 
sections of our secondary extinction curves for small/~; 
namely, the regions of the thin-crystal law and the 
parabolic law, and the region of very severe extinction 
where ~e  increases only slightly with increase of Q. 

The purpose of Fermi & Marshall's experiment was 
to compare with expectation sets of F values for a 
given substance, in order to determine whether certain 
nuclei were scattering in phase or antiphase. In nuclear 
physical experiments of this kind, in which crystals 
are deliberately chosen having predictable structure 
factors, it would be feasible to make quite accurate 
comparisons of structure factors on the simple 
assumption tha t  they were proportional to the in- 
tegrated reflexions. A crystal slab would be specially 
cut for each reading so tha t  the anticipated integrated 

reflexion would be in the middle of the parabolic 
region of the curve, tha t  is, to satisfy 4/70 = 4~]/Q. The 

range of 1 Q t o covered by the parabolic law then 

permits a considerable tolerance on the estimate of ~] 
without loss of accuracy in the measurement of F.  

Using the transmission method, the corresponding 
region of an approximate Q~ law is more restricted and 

is centred at  a lower value of 1 Q to. 
yo 

Small  crystals 
In  structure-analysis work, a very large number of 

structure factors have to be measured for each sub- 
stance investigated, and the usual goniometrie tech- 
nique is indispensable. For a neutron diffraction study, 
the region of the Qt law might be expected to permit 
the use of thicker crystals without the need of absolute 
measurements, and hence be desirable on grounds of 
intensity. Unfortunately,  it appears tha t  this method 
loses its advantages, when applied to crystal-analysis 
technique. 

In the first place, it must be remembered tha t  the 
detailed solutions given in this paper are calculated 
only for plane parallel plates. Crystals cannot always 
be artificially made in this form, and the same 
solutions cannot be extended to crystals of different 
shape without further justification. Back-reflexion and 
forward-reflexion spots will correspond respectively to 
the reflexion and transmission methods of Fig. 2, inas- 
much as all the ray paths pass through the crystal in 
the lat ter  case but  not in the former; but  in the con- 
ventional small ' round '  crystal the case of diffraction 
at  intermediate angles is not an approximation to 
either method. I t  is highly improbable tha t  any 
teChnique relying on severe secondary extinction 
could be usefully developed for crystals of any but  the 
simplest shapes, since the measured reflexions will 
require to be taken at  all angles to the crystal. 

Moreover, even where a crystal plate can be used, 
the intention of the experiment is to measure a great 
range of structure factors, using only one crystal. The 
extent of the parabolic law, however, is only sufficient 
to determine relative Q values to 5 % over a 7 : 1 range 
of magnitudes even ff y is known precisely. In  order 
to avoid this limitation an absolute calibration curve 
of the type shown in Fig. 6 (a) would need to be plotted. 

The region of the thin crystal law is therefore the 
most at tract ive for structure analysis ff complicated 
absolute measurements are to be avoided. Here the 
practical difficulty is tha t  of detecting the diffracted 
beam at all. For the present we shall only comment on 
the size of the crystal. The maximum thickness of 
crystal plate to which the Q V law can be applied can 
be seen from the figures or from the thin-crystal  
criterion (11). I t  is of the order of a small fraction of 
a millimetre, which might be lust practicable for 
neutron crystallography. 
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6. S U M M A R Y  

The paper arises from the desire to extend the theory 
of secondary extinction to non-absorbing crystals, since 
absorption coefficients to neutrons are usually a small 
fraction of a unit. Neutron diffraction demands an 
altogether different approximation in crystallographic 
theory from that  used for X-ray work. In absorbing 
crystals, the incident beam cannot penetrate suffi- 
ciently far for extinction to become serious, and the 
integrated reflexion Q/2# remains proportional to F 9", 
just as in the small crystallite. This does not occur with 
non-absorbing crystals, and in order to avoid the 
effects of extinction the crystals must be very thin 
indeed. 

A study of the equations controlling the distribution 
of intensity inside non-absorbing crystal plates, shows 
that  in the reflexion method of Fig. 2 (a) the intensity of 
the incident beam is reduced linearly within the crystal 
as shown in Fig. 3 (a) ; in the transmission method the 
reduction has the exponential form of Fig. 3 (b). The 
penetration into the crystal is therefore always com- 
plete, and the reflexion does not take place in a thin 
surface layer only, as it does with perfect or highly 
absorbing crystals. 

Diffraction curves from non-absorbing crystals using 
the reflexion method are given in Fig. 4. For weak 
reflexions from thin crystals, the curve has the shape of 
the mosaic block angular distribution function, which 
is assumed to be gaussian with a standard deviation 7, 
t h e '  mosaic spread'. With thicker crystals and stronger 
reflexions the diffraction curve tends to unit amplitude 
over the greater part  of the range of angle in which 
appreciable reflexion occurs, so that  the integrated 
reflexion, which is the area under this curve, is of the 
Order of ~ and ceases to depend strongly on Q. The 
departure from the Q V law, paralleling the onset of 
secondary extinction, is shown in curves for crystals 
of different mosaic spread in Fig. 5. 

A ' thin crystal ' ,  using eithe~ the reflexion or the 
transmission method, is found to be one having 
to/To<~/4Q, To being the cosine of the angle of in- 
cidence to the slab. This thickness is only of the order 
of 0"1 mm. in the case of neutron diffraction. A crystal 
is said to be ' /hick '  if t0/T0 > 50~/Q. These criteria apply 
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to 'non-absorbing' crystals, which are defined as those 
with #<Q/50y which is of the order of 0.3 cm. -1 
'Absorbing' crystals, whose integrated reflexion comes 
within 5 % of Q/2#, have # > 4Q/y, which is about 
50 cm. -1. 

The general results for the integrated reflexion for 
crystal plates of intermediate absorption and thickness 
are exhibited in detail in Fig. 6. The calculations lead 
to curves showing the dependence of integrated re- 
flexion on Q/2# (Fig. 7), and giving the optimum 
thickness of a crystal slab for measurements by the 
transmission method (Fig. 8). This latter quantity is 
usually taken to be 1/# sec 0 B when secondary ex- 
tinction can be ignored. 

As the integrated refiexion from 'non-absorbing' 
crystal plates by the reflexion method falls away from 
Q V with increase of thickness or structure factor or 
decrease of mosaic spread, it passes through a 7 : 1  
range of practical values in which it is closely pro- 
portional to F. The centre of the range is given by 
to/To=4y/Q, which is usually of the order of milli- 
metres. This result explains an observation of Fermi 
& Marshall that  the apparent reflectivity of crystals 
to neutrons was proportional to the structure factor. 

The formulae for the integrated reflexion permit an 
interesting analogy to be drawn between primary and 
secondary extinction. The curves of Fig. 9, which are 
explained in the text, bring the two cases together and 
show that  y has a similar role to the quantity s in 
perfect-crystal theory. 

This paper is published by permission of the 
Director of the Atomic Energy Research Establish- 
ment. The authors wish to thank Dr J. Thewlis and 
Mr R. S. Pease for much helpful discussion and com- 
ment during its preparation. 

References 
BACON, G. E. & THEWLIS, J. (in the Press). Prec. Roy. Soc. A. 
COM~TON, A. H. & Az~IsoN, S. K. (1935). X-rays in 

Theory and Experiment. New York: Van Nostrand. 
FERMI, E. ~5 MARSHALL, L. (1947). Phys. Rev. 71,666. 
LONSDALE, K. (1947). Miner. Mag. 28, 14. 
ZACHA~IASE~, W. H. (1944). Theory of X-ray Diffraction 

in Crystals. New York: Wiley. 


